------------------------------------------------------------------------ -- The Agda standard library -- -- Definitions of algebraic structures like monoids and rings -- (packed in records together with sets, operations, etc.) ------------------------------------------------------------------------ -- The contents of this module should be accessed via `Algebra`. {-# OPTIONS --without-K --safe #-} module Algebra.Bundles where open import Algebra.Core open import Algebra.Structures open import Relation.Binary open import Function.Base open import Level ------------------------------------------------------------------------ -- Bundles with 1 binary operation ------------------------------------------------------------------------ record RawMagma c : Set (suc (c )) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _∙_ : Op₂ Carrier record Magma c : Set (suc (c )) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _∙_ : Op₂ Carrier isMagma : IsMagma _≈_ _∙_ open IsMagma isMagma public rawMagma : RawMagma _ _ rawMagma = record { _≈_ = _≈_; _∙_ = _∙_ } record Semigroup c : Set (suc (c )) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _∙_ : Op₂ Carrier isSemigroup : IsSemigroup _≈_ _∙_ open IsSemigroup isSemigroup public magma : Magma c magma = record { isMagma = isMagma } open Magma magma public using (rawMagma) record Band c : Set (suc (c )) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _∙_ : Op₂ Carrier isBand : IsBand _≈_ _∙_ open IsBand isBand public semigroup : Semigroup c semigroup = record { isSemigroup = isSemigroup } open Semigroup semigroup public using (magma; rawMagma) record CommutativeSemigroup c : Set (suc (c )) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _∙_ : Op₂ Carrier isCommutativeSemigroup : IsCommutativeSemigroup _≈_ _∙_ open IsCommutativeSemigroup isCommutativeSemigroup public semigroup : Semigroup c semigroup = record { isSemigroup = isSemigroup } open Semigroup semigroup public using (magma; rawMagma) record Semilattice c : Set (suc (c )) where infixr 7 _∧_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _∧_ : Op₂ Carrier isSemilattice : IsSemilattice _≈_ _∧_ open IsSemilattice isSemilattice public band : Band c band = record { isBand = isBand } open Band band public using (rawMagma; magma; semigroup) record SelectiveMagma c : Set (suc (c )) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _∙_ : Op₂ Carrier isSelectiveMagma : IsSelectiveMagma _≈_ _∙_ open IsSelectiveMagma isSelectiveMagma public magma : Magma c magma = record { isMagma = isMagma } open Magma magma public using (rawMagma) ------------------------------------------------------------------------ -- Bundles with 1 binary operation & 1 element ------------------------------------------------------------------------ -- A raw monoid is a monoid without any laws. record RawMonoid c : Set (suc (c )) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _∙_ : Op₂ Carrier ε : Carrier rawMagma : RawMagma c rawMagma = record { _≈_ = _≈_ ; _∙_ = _∙_ } record Monoid c : Set (suc (c )) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _∙_ : Op₂ Carrier ε : Carrier isMonoid : IsMonoid _≈_ _∙_ ε open IsMonoid isMonoid public semigroup : Semigroup _ _ semigroup = record { isSemigroup = isSemigroup } open Semigroup semigroup public using (rawMagma; magma) rawMonoid : RawMonoid _ _ rawMonoid = record { _≈_ = _≈_; _∙_ = _∙_; ε = ε} record CommutativeMonoid c : Set (suc (c )) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _∙_ : Op₂ Carrier ε : Carrier isCommutativeMonoid : IsCommutativeMonoid _≈_ _∙_ ε open IsCommutativeMonoid isCommutativeMonoid public monoid : Monoid _ _ monoid = record { isMonoid = isMonoid } open Monoid monoid public using (rawMagma; magma; semigroup; rawMonoid) commutativeSemigroup : CommutativeSemigroup _ _ commutativeSemigroup = record { isCommutativeSemigroup = isCommutativeSemigroup } record IdempotentCommutativeMonoid c : Set (suc (c )) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _∙_ : Op₂ Carrier ε : Carrier isIdempotentCommutativeMonoid : IsIdempotentCommutativeMonoid _≈_ _∙_ ε open IsIdempotentCommutativeMonoid isIdempotentCommutativeMonoid public commutativeMonoid : CommutativeMonoid _ _ commutativeMonoid = record { isCommutativeMonoid = isCommutativeMonoid } open CommutativeMonoid commutativeMonoid public using (rawMagma; magma; semigroup; rawMonoid; monoid) -- Idempotent commutative monoids are also known as bounded lattices. -- Note that the BoundedLattice necessarily uses the notation inherited -- from monoids rather than lattices. BoundedLattice = IdempotentCommutativeMonoid module BoundedLattice {c } (idemCommMonoid : IdempotentCommutativeMonoid c ) = IdempotentCommutativeMonoid idemCommMonoid ------------------------------------------------------------------------ -- Bundles with 1 binary operation, 1 unary operation & 1 element ------------------------------------------------------------------------ record RawGroup c : Set (suc (c )) where infix 8 _⁻¹ infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _∙_ : Op₂ Carrier ε : Carrier _⁻¹ : Op₁ Carrier rawMonoid : RawMonoid c rawMonoid = record { _≈_ = _≈_ ; _∙_ = _∙_ ; ε = ε } open RawMonoid rawMonoid public using (rawMagma) record Group c : Set (suc (c )) where infix 8 _⁻¹ infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _∙_ : Op₂ Carrier ε : Carrier _⁻¹ : Op₁ Carrier isGroup : IsGroup _≈_ _∙_ ε _⁻¹ open IsGroup isGroup public rawGroup : RawGroup _ _ rawGroup = record { _≈_ = _≈_; _∙_ = _∙_; ε = ε; _⁻¹ = _⁻¹} monoid : Monoid _ _ monoid = record { isMonoid = isMonoid } open Monoid monoid public using (rawMagma; magma; semigroup; rawMonoid) record AbelianGroup c : Set (suc (c )) where infix 8 _⁻¹ infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _∙_ : Op₂ Carrier ε : Carrier _⁻¹ : Op₁ Carrier isAbelianGroup : IsAbelianGroup _≈_ _∙_ ε _⁻¹ open IsAbelianGroup isAbelianGroup public group : Group _ _ group = record { isGroup = isGroup } open Group group public using (rawMagma; magma; semigroup; monoid; rawMonoid; rawGroup) commutativeMonoid : CommutativeMonoid _ _ commutativeMonoid = record { isCommutativeMonoid = isCommutativeMonoid } open CommutativeMonoid commutativeMonoid public using (commutativeSemigroup) ------------------------------------------------------------------------ -- Bundles with 2 binary operations ------------------------------------------------------------------------ record Lattice c : Set (suc (c )) where infixr 7 _∧_ infixr 6 _∨_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _∨_ : Op₂ Carrier _∧_ : Op₂ Carrier isLattice : IsLattice _≈_ _∨_ _∧_ open IsLattice isLattice public setoid : Setoid _ _ setoid = record { isEquivalence = isEquivalence } record DistributiveLattice c : Set (suc (c )) where infixr 7 _∧_ infixr 6 _∨_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _∨_ : Op₂ Carrier _∧_ : Op₂ Carrier isDistributiveLattice : IsDistributiveLattice _≈_ _∨_ _∧_ open IsDistributiveLattice isDistributiveLattice public lattice : Lattice _ _ lattice = record { isLattice = isLattice } open Lattice lattice public using (setoid) ------------------------------------------------------------------------ -- Bundles with 2 binary operations & 1 element ------------------------------------------------------------------------ record NearSemiring c : Set (suc (c )) where infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _+_ : Op₂ Carrier _*_ : Op₂ Carrier 0# : Carrier isNearSemiring : IsNearSemiring _≈_ _+_ _*_ 0# open IsNearSemiring isNearSemiring public +-monoid : Monoid _ _ +-monoid = record { isMonoid = +-isMonoid } open Monoid +-monoid public using () renaming ( rawMagma to +-rawMagma ; magma to +-magma ; semigroup to +-semigroup ; rawMonoid to +-rawMonoid ) *-semigroup : Semigroup _ _ *-semigroup = record { isSemigroup = *-isSemigroup } open Semigroup *-semigroup public using () renaming ( rawMagma to *-rawMagma ; magma to *-magma ) record SemiringWithoutOne c : Set (suc (c )) where infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _+_ : Op₂ Carrier _*_ : Op₂ Carrier 0# : Carrier isSemiringWithoutOne : IsSemiringWithoutOne _≈_ _+_ _*_ 0# open IsSemiringWithoutOne isSemiringWithoutOne public nearSemiring : NearSemiring _ _ nearSemiring = record { isNearSemiring = isNearSemiring } open NearSemiring nearSemiring public using ( +-rawMagma; +-magma; +-semigroup ; +-rawMonoid; +-monoid ; *-rawMagma; *-magma; *-semigroup ) +-commutativeMonoid : CommutativeMonoid _ _ +-commutativeMonoid = record { isCommutativeMonoid = +-isCommutativeMonoid } open CommutativeMonoid +-commutativeMonoid public using () renaming (commutativeSemigroup to +-commutativeSemigroup) record CommutativeSemiringWithoutOne c : Set (suc (c )) where infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _+_ : Op₂ Carrier _*_ : Op₂ Carrier 0# : Carrier isCommutativeSemiringWithoutOne : IsCommutativeSemiringWithoutOne _≈_ _+_ _*_ 0# open IsCommutativeSemiringWithoutOne isCommutativeSemiringWithoutOne public semiringWithoutOne : SemiringWithoutOne _ _ semiringWithoutOne = record { isSemiringWithoutOne = isSemiringWithoutOne } open SemiringWithoutOne semiringWithoutOne public using ( +-rawMagma; +-magma; +-semigroup; +-commutativeSemigroup ; *-rawMagma; *-magma; *-semigroup ; +-rawMonoid; +-monoid; +-commutativeMonoid ; nearSemiring ) ------------------------------------------------------------------------ -- Bundles with 2 binary operations & 2 elements ------------------------------------------------------------------------ record RawSemiring c : Set (suc (c )) where infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _+_ : Op₂ Carrier _*_ : Op₂ Carrier 0# : Carrier 1# : Carrier record SemiringWithoutAnnihilatingZero c : Set (suc (c )) where infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _+_ : Op₂ Carrier _*_ : Op₂ Carrier 0# : Carrier 1# : Carrier isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero _≈_ _+_ _*_ 0# 1# open IsSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero public +-commutativeMonoid : CommutativeMonoid _ _ +-commutativeMonoid = record { isCommutativeMonoid = +-isCommutativeMonoid } open CommutativeMonoid +-commutativeMonoid public using () renaming ( rawMagma to +-rawMagma ; magma to +-magma ; semigroup to +-semigroup ; commutativeSemigroup to +-commutativeSemigroup ; rawMonoid to +-rawMonoid ; monoid to +-monoid ) *-monoid : Monoid _ _ *-monoid = record { isMonoid = *-isMonoid } open Monoid *-monoid public using () renaming ( rawMagma to *-rawMagma ; magma to *-magma ; semigroup to *-semigroup ; rawMonoid to *-rawMonoid ) record Semiring c : Set (suc (c )) where infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _+_ : Op₂ Carrier _*_ : Op₂ Carrier 0# : Carrier 1# : Carrier isSemiring : IsSemiring _≈_ _+_ _*_ 0# 1# open IsSemiring isSemiring public rawSemiring : RawSemiring _ _ rawSemiring = record { _≈_ = _≈_ ; _+_ = _+_ ; _*_ = _*_ ; 0# = 0# ; 1# = 1# } semiringWithoutAnnihilatingZero : SemiringWithoutAnnihilatingZero _ _ semiringWithoutAnnihilatingZero = record { isSemiringWithoutAnnihilatingZero = isSemiringWithoutAnnihilatingZero } open SemiringWithoutAnnihilatingZero semiringWithoutAnnihilatingZero public using ( +-rawMagma; +-magma; +-semigroup; +-commutativeSemigroup ; *-rawMagma; *-magma; *-semigroup ; +-rawMonoid; +-monoid; +-commutativeMonoid ; *-rawMonoid; *-monoid ) semiringWithoutOne : SemiringWithoutOne _ _ semiringWithoutOne = record { isSemiringWithoutOne = isSemiringWithoutOne } open SemiringWithoutOne semiringWithoutOne public using (nearSemiring) record CommutativeSemiring c : Set (suc (c )) where infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _+_ : Op₂ Carrier _*_ : Op₂ Carrier 0# : Carrier 1# : Carrier isCommutativeSemiring : IsCommutativeSemiring _≈_ _+_ _*_ 0# 1# open IsCommutativeSemiring isCommutativeSemiring public semiring : Semiring _ _ semiring = record { isSemiring = isSemiring } open Semiring semiring public using ( +-rawMagma; +-magma; +-semigroup; +-commutativeSemigroup ; *-rawMagma; *-magma; *-semigroup ; +-rawMonoid; +-monoid; +-commutativeMonoid ; *-rawMonoid; *-monoid ; nearSemiring; semiringWithoutOne ; semiringWithoutAnnihilatingZero ; rawSemiring ) *-commutativeSemigroup : CommutativeSemigroup _ _ *-commutativeSemigroup = record { isCommutativeSemigroup = *-isCommutativeSemigroup } *-commutativeMonoid : CommutativeMonoid _ _ *-commutativeMonoid = record { isCommutativeMonoid = *-isCommutativeMonoid } commutativeSemiringWithoutOne : CommutativeSemiringWithoutOne _ _ commutativeSemiringWithoutOne = record { isCommutativeSemiringWithoutOne = isCommutativeSemiringWithoutOne } ------------------------------------------------------------------------ -- Bundles with 2 binary operations, 1 unary operation & 2 elements ------------------------------------------------------------------------ -- A raw ring is a ring without any laws. record RawRing c : Set (suc (c )) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier 0# : Carrier 1# : Carrier +-rawGroup : RawGroup c +-rawGroup = record { _≈_ = _≈_ ; _∙_ = _+_ ; ε = 0# ; _⁻¹ = -_ } *-rawMonoid : RawMonoid c *-rawMonoid = record { _≈_ = _≈_ ; _∙_ = _*_ ; ε = 1# } record Ring c : Set (suc (c )) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier 0# : Carrier 1# : Carrier isRing : IsRing _≈_ _+_ _*_ -_ 0# 1# open IsRing isRing public +-abelianGroup : AbelianGroup _ _ +-abelianGroup = record { isAbelianGroup = +-isAbelianGroup } semiring : Semiring _ _ semiring = record { isSemiring = isSemiring } open Semiring semiring public using ( +-rawMagma; +-magma; +-semigroup; +-commutativeSemigroup ; *-rawMagma; *-magma; *-semigroup ; +-rawMonoid; +-monoid ; +-commutativeMonoid ; *-rawMonoid; *-monoid ; nearSemiring; semiringWithoutOne ; semiringWithoutAnnihilatingZero ) open AbelianGroup +-abelianGroup public using () renaming (group to +-group) rawRing : RawRing _ _ rawRing = record { _≈_ = _≈_ ; _+_ = _+_ ; _*_ = _*_ ; -_ = -_ ; 0# = 0# ; 1# = 1# } record CommutativeRing c : Set (suc (c )) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier 0# : Carrier 1# : Carrier isCommutativeRing : IsCommutativeRing _≈_ _+_ _*_ -_ 0# 1# open IsCommutativeRing isCommutativeRing public ring : Ring _ _ ring = record { isRing = isRing } commutativeSemiring : CommutativeSemiring _ _ commutativeSemiring = record { isCommutativeSemiring = isCommutativeSemiring } open Ring ring public using (rawRing; +-group; +-abelianGroup) open CommutativeSemiring commutativeSemiring public using ( +-rawMagma; +-magma; +-semigroup; +-commutativeSemigroup ; *-rawMagma; *-magma; *-semigroup; *-commutativeSemigroup ; +-rawMonoid; +-monoid; +-commutativeMonoid ; *-rawMonoid; *-monoid; *-commutativeMonoid ; nearSemiring; semiringWithoutOne ; semiringWithoutAnnihilatingZero; semiring ; commutativeSemiringWithoutOne ) record BooleanAlgebra c : Set (suc (c )) where infix 8 ¬_ infixr 7 _∧_ infixr 6 _∨_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier _∨_ : Op₂ Carrier _∧_ : Op₂ Carrier ¬_ : Op₁ Carrier : Carrier : Carrier isBooleanAlgebra : IsBooleanAlgebra _≈_ _∨_ _∧_ ¬_ open IsBooleanAlgebra isBooleanAlgebra public distributiveLattice : DistributiveLattice _ _ distributiveLattice = record { isDistributiveLattice = isDistributiveLattice } open DistributiveLattice distributiveLattice public using (setoid; lattice) ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.0 RawSemigroup = RawMagma {-# WARNING_ON_USAGE RawSemigroup "Warning: RawSemigroup was deprecated in v1.0. Please use RawMagma instead." #-}